Thứ Bảy, 22 tháng 2, 2014

Bài tập toán cáo cấp tập 2

4Chu
.
o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
7.1 Gi´o
.
iha
.
ncu

ad˜ay sˆo
´
H`am sˆo
´
x´ac di
.
nh trˆen tˆa
.
pho
.
.
p N d
u
.
o
.
.
cgo
.
i l`a d˜ay sˆo
´
vˆo ha
.
n. D˜ay sˆo
´
thu
.
`o
.
ng d
u
.
o
.
.
cviˆe
´
tdu
.
´o
.
ida
.
ng:
a
1
,a
2
, ,a
n
, (7.1)
ho˘a
.
c {a
n
}, trong d´o a
n
= f(n), n ∈ N du
.
o
.
.
cgo
.
il`asˆo
´
ha
.
ng tˆo

ng qu´at
cu

a d˜ay, n l`a sˆo
´
hiˆe
.
ucu

asˆo
´
ha
.
ng trong d˜ay.
Ta cˆa
`
nlu
.
u ´y c´ac kh´ai niˆe
.
m sau d
ˆay:
i) D˜ay (7.1) d
u
.
o
.
.
cgo
.
il`abi
.
ch˘a
.
nnˆe
´
u ∃ M ∈ R
+
: ∀ n ∈ N ⇒|a
n
| 
M; v`a go
.
i l`a khˆong bi
.
ch˘a
.
nnˆe
´
u: ∀ M ∈ R
+
: ∃ n ∈ N ⇒|a
n
| >M.
ii) Sˆo
´
a d
u
.
o
.
.
cgo
.
i l`a gi´o
.
iha
.
ncu

a d˜ay (7.1) nˆe
´
u:
∀ ε>0, ∃ N(ε):∀ n  N ⇒|a
n
− a| <ε. (7.2)
iii) Sˆo
´
a khˆong pha

i l`a gi´o
.
iha
.
ncu

a d˜ay (7.1) nˆe
´
u:
∃ ε>0, ∀ N : ∃ n  N ⇒|a
n
− a|  ε. (7.3)
iv) D˜ay c´o gi´o
.
iha
.
nd
u
.
o
.
.
cgo
.
i l`a d˜ay hˆo
.
itu
.
, trong tru
.
`o
.
ng ho
.
.
p ngu
.
o
.
.
c
la
.
i d˜ay (7.1) go
.
i l`a d˜ay phˆan k`y.
v) D˜ay (7.1) go
.
i l`a d˜ay vˆo c`ung b´e nˆe
´
u lim
n→∞
a
n
=0v`ago
.
i l`a d˜ay
vˆo c`ung l´o
.
nnˆe
´
u ∀ A>0, ∃ N sao cho ∀ n>N⇒|a
n
| >Av`a viˆe
´
t
lim a
n
= ∞.
vi) D
iˆe
`
ukiˆe
.
ncˆa
`
ndˆe

d˜ay hˆo
.
itu
.
l`a d˜ay d´o pha

ibi
.
ch˘a
.
n.
Ch´u´y:i) Hˆe
.
th´u
.
c (7.2) tu
.
o
.
ng d
u
.
o
.
ng v´o
.
i:
−ε<a
n
− a<ε⇔ a − ε<a
n
<a+ ε. (7.4)
7.1. Gi´o
.
iha
.
ncu

a d˜ay sˆo
´
5
Hˆe
.
th´u
.
c (7.4) ch´u
.
ng to

r˘a
`
ng mo
.
isˆo
´
ha
.
ng v´o
.
ichı

sˆo
´
n>Ncu

a d˜ay
hˆo
.
itu
.
d
ˆe
`
un˘a
`
m trong khoa

ng (a − ε, a + ε), khoa

ng n`ay go
.
il`aε-lˆan
cˆa
.
ncu

ad
iˆe

m a.
Nhu
.
vˆa
.
y, nˆe
´
u d˜ay (7.1) hˆo
.
itu
.
d
ˆe
´
nsˆo
´
a th`ı mo
.
isˆo
´
ha
.
ng cu

a n´o tr`u
.
ra mˆo
.
tsˆo
´
h˜u
.
uha
.
nsˆo
´
ha
.
ng d
ˆe
`
un˘a
`
m trong ε-lˆan cˆa
.
nbˆa
´
tk`yb´ebao
nhiˆeu t`uy ´y cu

ad
iˆe

m a.
ii) Ta lu
.
u´yr˘a
`
ng d˜ay sˆo
´
vˆo c`ung l´o
.
n khˆong hˆo
.
itu
.
v`a k´y hiˆe
.
u
lim a
n
= ∞ (−∞)chı

c´o ngh˜ıa l`a d˜ay a
n
l`a vˆo c`ung l´o
.
nv`ak´yhiˆe
.
ud
´o
ho`an to`an khˆong c´o ngh˜ıa l`a d˜ay c´o gi´o
.
iha
.
n.
7.1.1 C´ac b`ai to´an liˆen quan t´o
.
id
i
.
nh ngh˜ıa gi´o
.
i
ha
.
n
Dˆe

ch´u
.
ng minh lim a
n
= a b˘a
`
ng c´ach su
.

du
.
ng d
i
.
nh ngh˜ıa, ta cˆa
`
ntiˆe
´
n
h`anh theo c´ac bu
.
´o
.
csaud
ˆay:
i) Lˆa
.
pbiˆe

uth´u
.
c |a
n
− a|
ii) Cho
.
n d˜ay b
n
(nˆe
´
udiˆe
`
ud´o c ´o l o
.
.
i) sao cho |a
n
− a|  b
n
∀ n v`a
v´o
.
i ε d
u

b´e bˆa
´
tk`ybˆa
´
tphu
.
o
.
ng tr`ınh d
ˆo
´
iv´o
.
i n:
b
n
<ε (7.5)
c´o thˆe

gia

imˆo
.
t c´ach dˆe
˜
d`ang. Gia

su
.

(7.5) c´o nghiˆe
.
ml`an>f(ε),
f(ε) > 0. Khi d
´o ta c´o thˆe

lˆa
´
y n l`a [f(ε)], trong d´o[f(ε)] l`a phˆa
`
n
nguyˆen cu

a f(ε).
C
´
AC V
´
IDU
.
V´ı d u
.
1. Gia

su
.

a
n
= n
(−1)
n
.Ch´u
.
ng minh r˘a
`
ng:
i) D˜ay a
n
khˆong bi
.
ch˘a
.
n.
ii) D˜ay a
n
khˆong pha

il`avˆoc`ung l´o
.
n.
Gia

i. i) Ta ch´u
.
ng minh r˘a
`
ng a
n
tho

a m˜an di
.
nh ngh˜ıa d˜ay khˆong
bi
.
ch˘a
.
n. Thˆa
.
tvˆa
.
y, ∀ M>0sˆo
´
ha
.
ng v´o
.
isˆo
´
hiˆe
.
u n = 2([M]+1) b˘a
`
ng
n v`a l´o
.
nho
.
n M.D
iˆe
`
ud´o c´o ngh˜ıa l`a d˜ay a
n
khˆong bi
.
ch˘a
.
n.
6Chu
.
o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
ii) Ta ch´u
.
ng minh r˘a
`
ng a
n
khˆong pha

i l`a vˆo c`ung l´o
.
n. Thˆa
.
tvˆa
.
y,
ta x´et khoa

ng (−2, 2). Hiˆe

n nhiˆen mo
.
isˆo
´
ha
.
ng cu

a d˜ay v´o
.
isˆo
´
hiˆe
.
ule

d
ˆe
`
u thuˆo
.
c khoa

ng (−2, 2) v`ı khi n le

th`ı ta c´o:
n
(−1)
n
= n
−1
=1/n ∈ (−2, 2).
Nhu
.
vˆa
.
y trong kho

ng (−2, 2) c´o vˆo sˆo
´
sˆo
´
ha
.
ng cu

a d˜ay. T`u
.
d
´o,
theo d
i
.
nh ngh˜ıa suy ra a
n
khˆong pha

i l`a vˆo c`ung l´o
.
n. 
V´ı du
.
2. D`ung d
i
.
nh ngh˜ıa gi´o
.
iha
.
n d˜ay sˆo
´
d
ˆe

ch´u
.
ng minh r˘a
`
ng:
1) lim
n→∞
(−1)
n−1
n
=0. 2) lim
n→∞
n
n +1
=1.
Gia

i. D
ˆe

ch´u
.
ng minh d˜ay a
n
c´o gi´o
.
iha
.
nl`aa, ta cˆa
`
nch´u
.
ng minh
r˘a
`
ng d
ˆo
´
iv´o
.
imˆo
˜
isˆo
´
ε>0 cho tru
.
´o
.
cc´othˆe

t`ım d
u
.
o
.
.
csˆo
´
N (N phu
.
thuˆo
.
c ε) sao cho khi n>Nth`ı suy ra |a
n
− a| <ε. Thˆong thu
.
`o
.
ng ta
c´o thˆe

chı

ra cˆong th´u
.
ctu
.
`o
.
ng minh biˆe

udiˆe
˜
n N qua ε.
1) Ta c´o:
|a
n
− 0| =



(−1)
n−1
n



=
1
n
·
Gia

su
.

ε l`a sˆo
´
du
.
o
.
ng cho tru
.
´o
.
ct`uy ´y. Khi d
´o:
1
n
<ε⇔ n>
1
ε
·
V`ıthˆe
´
ta c´o thˆe

lˆa
´
y N l`a sˆo
´
tu
.
.
nhiˆen n`ao d
´o tho

am˜andiˆe
`
ukiˆe
.
n:
N>
1
ε

1
N
<ε.
(Ch˘a

ng ha
.
n, ta c´o thˆe

lˆa
´
y N =[1/ε], trong d
´o[1/ε] l`a phˆa
`
n nguyˆen
cu

a1/ε).
Khi d
´o ∀ n  N th`ı:
|a
n
− 0| =
1
n

1
N
<ε.
7.1. Gi´o
.
iha
.
ncu

a d˜ay sˆo
´
7
Diˆe
`
ud´o c´o ngh˜ıa l`a lim
n→∞
(−1)
n
n
=0.
2) Ta lˆa
´
ysˆo
´
ε>0bˆa
´
tk`yv`at`ımsˆo
´
tu
.
.
nhiˆen N(ε) sao cho ∀ n>
N(ε) th`ı:



n
n +1
− 1



<ε.
Bˆa
´
td
˘a

ng th´u
.
c
|a
n
− 1| <ε⇔
1
n +1
<ε⇔
1
ε
− 1.
Do d
´o ta c´o thˆe

lˆa
´
ysˆo
´
N(ε) l`a phˆa
`
n nguyˆen cu

a
1
ε
− 1, t´u
.
c l`a:
N(ε)=E((1/ε) − 1).
Khi d
´ov´o
.
imo
.
i n  N ta c´o:



n
n +1
− 1



=
1
n +1

1
N +1
<ε⇒ lim
n→∞
n
n +1
=1. 
V´ı d u
.
3. Ch´u
.
ng minh r˘a
`
ng c´ac d˜ay sau d
ˆay phˆan k`y:
1) a
n
= n, n ∈ N (7.6)
2) a
n
=(−1)
n
,n∈ N (7.7)
3) a
n
=(−1)
n
+
1
n
· (7.8)
Gia

i. 1) Gia

su
.

d˜ay (7.6) hˆo
.
itu
.
v`a c´o gi´o
.
iha
.
nl`aa.Talˆa
´
y ε =1.
Khi d
´o theo di
.
nh ngh˜ıa gi´o
.
iha
.
ntˆo
`
nta
.
isˆo
´
hiˆe
.
u N sao cho ∀ n>Nth`ı
ta c´o |a
n
− a| < 1 ngh˜ıa l`a |n− a| < 1 ∀ n>N.T`u
.
d
´o −1 <n− a<1
∀ n>N⇔ a− 1 <n<a+1∀ n>N.
Nhu
.
ng bˆa
´
td
˘a

ng th´u
.
c n<a+1,∀ n>N l`a vˆo l´y v`ı tˆa
.
pho
.
.
p c´ac
sˆo
´
tu
.
.
nhiˆen khˆong bi
.
ch˘a
.
n.
2) C´ach 1. Gia

su
.

d˜ay a
n
hˆo
.
itu
.
v`a c´o gi´o
.
iha
.
nl`aa.Talˆa
´
y lˆan
cˆa
.
n

a−
1
2
,a+
1
2

cu

ad
iˆe

m a.Taviˆe
´
t d˜ay d˜a cho du
.
´o
.
ida
.
ng:
{a
n
} = −1, 1,−1, 1, (7.9)
8Chu
.
o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
V`ıdˆo
.
d`ai cu

a khoa

ng

a −
1
2
,a+
1
2

l`a b˘a
`
ng 1 nˆen hai d
iˆe

m −1
v`a +1 khˆong thˆe

d
ˆo
`
ng th`o
.
i thuˆo
.
c lˆan cˆa
.
n

a−
1
2
,a+
1
2

cu

ad
iˆe

m a,
v`ı khoa

ng c´ach gi˜u
.
a −1v`a+1b˘a
`
ng 2. D
iˆe
`
ud´o c´o ngh˜ıa l`a o
.

ngo`ai
lˆan cˆa
.
n

a −
1
2
,a+
1
2

c´o vˆo sˆo
´
sˆo
´
ha
.
ng cu

ad˜ayv`av`ıthˆe
´
(xem ch´u
´yo
.

trˆen) sˆo
´
a khˆong thˆe

l`a gi´o
.
iha
.
ncu

a d˜ay.
C´ach 2. Gia

su
.

a
n
→ a. Khi d´o ∀ ε>0 (lˆa
´
y ε =
1
2
) ta c´o
|a
n
− a| <
1
2
∀ n  N.
V`ı a
n
= ±1nˆen
|1 − a| <
1
2
, |−1 − a| <
1
2
⇒2=|(1 − a)+(1+a)|  |1 − a| + |a +1| 
1
2
+
1
2
=1
⇒2 < 1, vˆo l´y.
3) Lu
.
u´yr˘a
`
ng v´o
.
i n =2m ⇒ a
2m
=1+
1
2m
.Sˆo
´
ha
.
ng kˆe
`
v´o
.
in´o
c´o sˆo
´
hiˆe
.
ule

2m +1(hay2m − 1) v`a
a
2m+1
= −1+
1
2m +1
< 0 (hay a
2m−1
= −1+
1
2m − 1
 0).
T`u
.
d
´o suy r˘a
`
ng
|a
n
− a
n−1
| > 1.
Nˆe
´
usˆo
´
a n`ao d
´o l`a gi´o
.
iha
.
ncu

ad˜ay(a
n
) th`ı b˘a
´
tdˆa
`
ut`u
.
sˆo
´
hiˆe
.
u n`ao
d
´o ( a
n
) tho

a m˜an bˆa
´
td˘a

ng th´u
.
c |a
n
− a| <
1
2
. Khi d
´o
|a
n
− a
n+1
|  |a
n
− a| + |a
n+1
− a| <
1
2
+
1
2
=1.
Nhu
.
ng hiˆe
.
ugi˜u
.
a hai sˆo
´
ha
.
ng kˆe
`
nhau bˆa
´
tk`ycu

ad˜ayd
˜a cho luˆon luˆon
l´o
.
nho
.
n1. D
iˆe
`
u mˆau thuˆa
˜
n n`ay ch´u
.
ng to

r˘a
`
ng khˆong mˆo
.
tsˆo
´
thu
.
.
c
n`ao c´o thˆe

l`a gi´o
.
iha
.
ncu

a d˜ay d
˜a cho. 
7.1. Gi´o
.
iha
.
ncu

a d˜ay sˆo
´
9
B
`
AI T
ˆ
A
.
P
H˜ay su
.

du
.
ng d
i
.
nh ngh˜ıa gi´o
.
iha
.
nd
ˆe

ch´u
.
ng minh r˘a
`
ng
1. lim
n→∞
a
n
=1nˆe
´
u a
n
=
2n − 1
2n +2
2. lim
n→∞
a
n
=
3
5
nˆe
´
u a
n
=
3n
2
+1
5n
2
− 1
B˘a
´
td
ˆa
`
ut`u
.
sˆo
´
hiˆe
.
u N n`ao th`ı:
|a
n
− 3/5| < 0, 01 (DS. N =5)
3. lim
n→∞
a
n
=1nˆe
´
u a
n
=
3
n
+1
3
n
.
4. lim
n→∞
cos n
n
=0.
5. lim
n→∞
2
n
+5· 6
n
3
n
+6
n
=5.
6. lim
n→∞
3

n
2
sin n
2
n +1
=0.
7. Ch´u
.
ng minh r˘a
`
ng sˆo
´
a = 0 khˆong pha

i l`a gi´o
.
iha
.
ncu

a d˜ay a
n
=
n
2
− 2
2n
2
− 9
.
8. Ch´u
.
ng minh r˘a
`
ng
lim
n→∞
n
2
+2n +1+sinn
n
2
+ n +1
=1.
9. Ch´u
.
ng minh r˘a
`
ng d˜ay: a
n
=(−1)
n
+1/n phˆan k`y.
10. Ch´u
.
ng minh r˘a
`
ng d˜ay; a
n
= sin n
0
phˆan k`y.
11. T`ım gi´o
.
iha
.
ncu

a d˜ay: 0, 2; 0, 22; 0, 222; ,0, 22 2

 
n
,
Chı

dˆa
˜
n. Biˆe

udiˆe
˜
n a
n
du
.
´o
.
ida
.
ng
a
n
=0, 22 2=
2
10
+
2
10
2
+ ···+
2
10
n
(DS. lim a
n
=2/9)
10 Chu
.
o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
12. T`ım gi´o
.
iha
.
ncu

a d˜ay sˆo
´
:
0, 2; 0, 23; 0, 233; 0, 2333; ,0, 233 3

 
n
,
Chı

dˆa
˜
n. Biˆe

udiˆe
˜
n a
n
du
.
´o
.
ida
.
ng
a
n
=
2
10
+

3
10
2
+
3
10
3
+ ···+
3
10
n

(D
S. 7/30)
13. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u d˜ay a
n
hˆo
.
itu
.
dˆe
´
n a, c`on d˜ay b
n
dˆa
`
ndˆe
´
n
∞ th`ı d˜ay a
n
/b
n
dˆa
`
ndˆe
´
n0.
14. Ch´u
.
ng minh r˘a
`
ng
i) lim
n→∞
n
2
n
=0.
ii) lim
n→∞
n
a
n
=0 (a>1).
Chı

dˆa
˜
n. i) Su
.

du
.
ng hˆe
.
th´u
.
c:
2
n
= (1 + 1)
n
=1+n +
n(n − 1)
2
+ ···+1>n+
n(n − 1)
2
>
n
2
2
·
v`a u
.
´o
.
clu
.
o
.
.
ng |a
n
− 0|.
ii) Tu
.
o
.
ng tu
.
.
nhu
.
i). Su
.

du
.
ng hˆe
.
th´u
.
c:
a
n
=[1+(a − 1)]
n
>
n(n − 1)
2
(a − 1).
15. Ch´u
.
ng minh r˘a
`
ng
lim a
n
=2nˆe
´
u a
n
=1+
1
2
+ ···+
1
2
n
Chı

dˆa
˜
n.
´
Ap du
.
ng cˆong th´u
.
c t´ınh tˆo

ng cˆa
´
psˆo
´
nhˆan d
ˆe

t´ınh a
n
rˆo
`
i
u
.
´o
.
clu
.
o
.
.
ng |a
n
− 2|.
16. Biˆe
´
tr˘a
`
ng d˜ay a
n
c´o gi´o
.
iha
.
n, c`on d˜ay b
n
khˆong c´o gi´o
.
iha
.
n. C´o
thˆe

n´oi g`ıvˆe
`
gi´o
.
iha
.
ncu

a d˜ay:
i) {a
n
+ b
n
}.
ii) {a
n
b
n
}.
(D
S. i) lim{a
n
+ b
n
} khˆong tˆo
`
nta
.
i. H˜ay ch´u
.
ng minh.
7.1. Gi´o
.
iha
.
ncu

a d˜ay sˆo
´
11
ii) C´o thˆe

g˘a
.
pca

hai tru
.
`o
.
ng ho
.
.
p c´o gi´o
.
iha
.
n v`a khˆong c´o gi´o
.
iha
.
n,
v´ıdu
.
:
a
n
=
n − 1
n
,b
n
=(−1)
n
; a
n
=
1
n
,b
n
=(−1)
n
.
7.1.2 Ch´u
.
ng minh su
.
.
hˆo
.
itu
.
cu

a d˜ay sˆo
´
du
.
.
a trˆen
c´ac d
i
.
nh l´yvˆe
`
gi´o
.
iha
.
n
Dˆe

t´ınh gi´o
.
iha
.
ncu

a d˜ay sˆo
´
, ngu
.
`o
.
i ta thu
.
`o
.
ng su
.

du
.
ng c´ac d
i
.
nh l´y v`a
kh´ai niˆe
.
m sau d
ˆay:
Gia

su
.

lim a
n
= a, lim b
n
= b.
i) lim(a
n
± b
n
)=lima
n
± lim b
n
= a ± b.
ii) lim a
n
b
n
= lim a
n
· lim b
n
= a · b.
iii) Nˆe
´
u b = 0 th`ı b˘a
´
td
ˆa
`
ut`u
.
mˆo
.
tsˆo
´
hiˆe
.
u n`ao d
´o d˜ay a
n
/b
n
x´ac
d
i
.
nh (ngh˜ıa l`a ∃ N : ∀ n  N ⇒ b
n
= 0) v`a:
lim
a
n
b
n
=
lim a
n
lim b
n
=
a
b
·
iv) Nˆe
´
u lim a
n
= a, lim b
n
= a v`a b˘a
´
tdˆa
`
ut`u
.
mˆo
.
tsˆo
´
hiˆe
.
u n`ao d
´o
a
n
 z
n
 b
n
th`ı lim z
n
= a (Nguyˆen l´ybi
.
ch˘a
.
n hai phi´a).
v) T´ıch cu

a d˜ay vˆo c`ung b´e v´o
.
i d˜ay bi
.
ch˘a
.
n l`a d˜ay vˆo c`ung b´e.
vi) Nˆe
´
u(a
n
) l`a d˜ay vˆo c`ung l´o
.
nv`aa
n
= 0 th`ı d˜ay

1
a
n

l`a d˜ay vˆo
c`ung b´e; ngu
.
o
.
.
cla
.
i, nˆe
´
u α
n
l`a d˜ay vˆo c`ung b´e v`a α
n
=0th`ıd˜ay

1
α
n

l`a vˆo c`ung l´o
.
n.
Nhˆa
.
nx´et. D
ˆe

´ap du
.
ng d´ung d˘a
´
nc´acdi
.
nh l´y trˆen ta cˆa
`
nlu
.
u´ymˆo
.
t
sˆo
´
nhˆa
.
n x´et sau d
ˆay:
i) D
i
.
nh l´y (iii) vˆe
`
gi´o
.
iha
.
ncu

athu
.
o
.
ng s˜e khˆong ´ap du
.
ng d
u
.
o
.
.
cnˆe
´
u
tu
.

sˆo
´
v`a mˆa
˜
usˆo
´
khˆong c´o gi´o
.
iha
.
nh˜u
.
uha
.
n ho˘a
.
cmˆa
˜
usˆo
´
c´o gi´o
.
iha
.
n
b˘a
`
ng 0. Trong nh˜u
.
ng tru
.
`o
.
ng ho
.
.
pd
´o nˆen biˆe
´
ndˆo

iso
.
bˆo
.
d˜ay thu
.
o
.
ng,
ch˘a

ng ha
.
nb˘a
`
ng c´ach chia ho˘a
.
c nhˆan tu
.

sˆo
´
v`a mˆa
˜
usˆo
´
v´o
.
ic`ung mˆo
.
t
biˆe

uth´u
.
c.
12 Chu
.
o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
ii) Dˆo
´
iv´o
.
id
i
.
nh l´y (i) v`a (ii) c˜ung cˆa
`
n pha

i thˆa
.
n tro
.
ng khi ´ap du
.
ng.
Trong tru
.
`o
.
ng ho
.
.
p n`ay ta cˆa
`
n pha

ibiˆe
´
nd
ˆo

i c´ac biˆe

uth´u
.
c a
n
± b
n
v`a
a
n
· b
n
tru
.
´o
.
c khi t´ınh gi´o
.
iha
.
n (xem v´ıdu
.
1, iii).
iii) Nˆe
´
u a
n
= a ≡ const ∀ n th`ı lim
n→∞
a
n
= a.
C
´
AC V
´
IDU
.
V´ı du
.
1. T`ım lima
n
nˆe
´
u:
1) a
n
=(1+7
n+2
)/(3 − 7
n
)
2) a
n
=(2+4+6+···+2n)/[1+3+5+···+(2n + 1)]
3) a
n
= n
3
/(1
2
+2
2
+ ···+ n
2
)
Gia

i. D
ˆe

gia

i c´ac b`ai to´an n`ay ta d`ung l´y thuyˆe
´
tcˆa
´
psˆo
´
1) Nhˆan tu
.

sˆo
´
v`a mˆa
˜
usˆo
´
phˆan th´u
.
cv´o
.
i7
−n
ta c´o:
a
n
=
1+7
n+2
3 − 7
n
=
7
−n
+7
2
3 · 7
−n
− 1
Do d
´o
lim a
n
= lim
7
−n
+7
2
3 · 7
−n
− 1
= −49 v`ı lim 7
−n
=0,n→∞.
2) Tu
.

sˆo
´
v`a mˆa
˜
usˆo
´
d
ˆe
`
u l`a cˆa
´
psˆo
´
cˆo
.
ng nˆen ta c´o:
2+4+6+···+2n =
2+2n
2
· n;
1+3+5+···+(2n +1)=
1+(2n +2)
2
(n +1).
Do d
´o
a
n
=
n
n +1
⇒ lim a
n
=1.
3) Nhu
.
ta biˆe
´
t:
1
2
+2
2
+ ···+ n
2
=
n(n + 1)(2n +1)
6
7.1. Gi´o
.
iha
.
ncu

a d˜ay sˆo
´
13
v`a do d´o:
lim a
n
= lim
6n
3
n(n + 1)(2n +1)
= lim
6
(1+1/n)(2 + 1/n)
=3. 
V´ı d u
.
2. T`ım gi´o
.
iha
.
n
lim
1+
1
2
+
1
4
+ ···+
1
2
n
1+
1
3
+
1
9
+ ···+
1
3
n
Gia

i. Tu
.

sˆo
´
v`a mˆa
˜
usˆo
´
d
ˆe
`
ul`acˆa
´
psˆo
´
nhˆan nˆen
1+
1
2
+ ···+
1
2
n
=
2(2
n
− 1)
2
n
,
1+
1
3
+ ···+
1
3
n
=
3(3
n
− 1)
2 · 3
n
v`a do d´o:
lim a
n
= lim
2(2
n
− 1)
2
n
·
2 · 3
n
3(3
n
− 1)
= 2 lim
2
n
− 1
2
n
·
2
3
lim
3
n
3
n
− 1
= 2 lim[1 − (1/2)
n
] ·
2
3
lim
1
1 − (1/3)
n
=2· 1 ·
2
3
· 1=
4
3
· 
V´ı d u
.
3.
1) a
n
=

n
2
+ n − n
2) a
n
=
3

n +2−
3

n
3) a
n
=
3

n
2
− n
3
+ n
Gia

i.
1) Ta biˆe
´
nd
ˆo

i a
n
b˘a
`
ng c´ach nhˆan v`a chia cho da
.
ilu
.
o
.
.
ng liˆen ho
.
.
p
a
n
=
(

n
2
+ n − n)(

n
2
+ n + n)

n
2
+ n + n
=
n

n
2
+ n + n
=
1

1+1/n +1
Do d
´o
lim a
n
=
1
lim
n→∞
(

1+1/n +1)
=
1
2
·

Không có nhận xét nào:

Đăng nhận xét